

GERSTEL MAKING LABS WORK

Thermoextraktion und Desorption TED-GC/MS

Bestimmung von Mikroplastik

- Umweltproben, Trinkwasser und Getränken
- Analyse repräsentativer Probenmengen
- Massengehalt aufgeschlüsselt nach Polymer

GERSTEL-TED-GC/MS für die Analyse von Mikroplastik

Das GERSTEL-System zur gekoppelten Thermoextraktion, Desorption und GC/MS-Analyse (TED-GC/MS) erlaubt die vollautomatisierte Bestimmung von Mikroplastik in Umweltproben, beispielsweise Filterrückstände von Oberflächenwasser oder Luft, Bodenproben, Sediment oder Kompost.

Die Proben werden im Rahmen einer thermogravimetrischen Analyse (TGA) thermisch abgebaut, flüchtige Zersetzungsprodukte werden angereichert und per GC/MS analysiert. Dieser innovative Ansatz, ursprünglich erdacht von der deutschen Bundesanstalt für Materialforschung und -prüfung (BAM), erlaubt die indirekte qualitative und quantitative Bestimmung von Mikroplastik.

In Zusammenarbeit mit GERSTEL wurde aus dieser Idee das TED-GC/MS-System entwickelt. Es beinhaltet das patentierte TAU-Interface und ermöglicht die komplette Automatisierung des Ablaufs. Verglichen mit konventionellen spektroskopischen Methoden ist die TED-GC/MS deutlich weniger arbeitsintensiv.

Das TED-GC/MS-System nutzt ein Sorbens (GERSTEL-Twister) zur Anreicherung der gasförmigen Zersetzungsprodukte, die bei der Pyrolyse im TGA-System entstehen. Im Anschluss überführt ein Autosampler das Sorbens in ein separates Thermodesorption-(TD)-GC/MS-System zur Analyse. Ergebnis: Selbst Spuren von Polymeren in der ursprünglichen Probe werden über diesen indirekten Weg sicher nachgewiesen. Der komplette Analysenzyklus benötigt lediglich etwa zwei Stunden.

Dank der Verwendung der TGA anstatt klassischer Pyrolyse-GC/MS kann die bis zu 2000-fache Probenmenge analysiert werden, womit repräsentative Proben auf einfache Weise zugänglich sind. Und dank des patentierten TAU-Interfaces ist der Eintrag von nicht-flüchtiger Rückstände in das Analysensystem ausgeschlossen.

TED-GC/MS kommt mit einem Minimum an Probenvorbereitung aus, z.B. Trocknung oder Homogenisieren der Probe.

1 TGA

Thermogravimetrisches Analysengerät mit Autosampler für bis zu 34 Proben

2 TAU-Interface

Von GERSTEL in Zusammenarbeit mit der BAM entwickeltes patentiertes Interface zum Transfer flüchtiger Analyten nach der TGA.

3 Thermodesorber zur Analytenanreicherung

Analyten werden temperaturkontrolliert auf PDMS als Sorbens (GERSTEL-Twister) angereichert. TD-Röhrchen mit beladenen Twisters können im Anschluss direkt mittels TD-GC/MS analysiert oder einzeln abgedichtet auf einem MPS-Probentray gelagert werden.

4 Thermodesorber

Mit dem Analysensystem gekoppelter Thermodesorber (GERSTEL-TDU 2) zur thermischen Desorption beladener Twister. Ein GERSTEL-KaltAufgabeSystem (KAS) wird zur Fokussierung und zum Transfer auf die GC-Säule genutzt.

5 GC/MS-System

Qualitative und quantitative Bestimmung der flüchtigen Abbauprodukte und freigesetzter Additive

6 MultiPurposeSampler (MPS)

Der MPS erledigt den Transport sauberer und beladener Twister zwischen TGA und TD-GC/MS. Die Steuerung erfolgt mit der integrierten GERSTEL-MAESTRO-Software.

Das leistet Ihre TED-GC/MS-Lösung

Hohe Effizienz

- Wahlweise vollständig automatisiert
- Hohe Systemstabilität und längere Wartungsintervalle dank Trennung von Pyrolyseschritt und GC/MS-Analytik
- Robustheit gegenüber wechselnden Gehalten an pyrolysierbaren Stoffen

Korrekte Identifizierung auch bei komplexen Proben

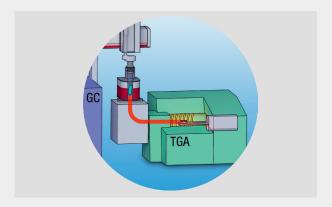
- Die Trennung von Pyrolyse und GC/MS ermöglicht signifikant höhere Konzentrationen an Marker-Peaks
- Auch bei hoher Matrixlast sichere Identifizierung mittels ChromIdent Pyro-Edition durch Abgleich mit der PYRO-Datenbank

Zuverlässige Ergebnisse

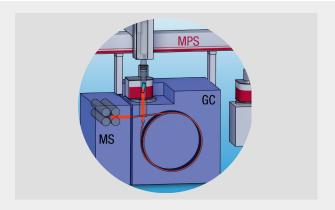
- Korrekte Ergebnisse bei heterogenen Proben dank Pyrolyse von bis zu 100 mg
- Dauerhaft richtige Ergebnisse durch Vermeidung von Kontaminationen oder Überladung des Analysensystems
- Nutzung der TGA-Daten zur Qualitätskontrolle (Probenhomogenität) möglich
- Nachvollziehbare und überprüfbare Identifizierung mittels ChromIdent Pyro-Edition
- Quantifizierung mittels internem oder externem Standard möglich. Referenzmaterialien sind bei der BAM erhältlich (https://webshop.bam.de)

Mikroplastik in Getränken und in Umweltproben

- Filtterrückstände von Trinkwasser und Getränken
- Boden und Sediment
- Kompost
- Reifenabrieb in Strassenablauf


Flexible Nutzung

- Neben der Bestimmung von primärem und sekundärem Mikroplastik können z.B. auch Thermoplaste, Duromere, Elastomere und Verbundwerkstoffe (z.B. WPC) charakterisiert werden
- TGA und TD-GC/MS können ohne Umbau unabhängig genutzt werden
- Die TD-GC/MS ermöglicht unter anderem den Nachweis luftgetragener Schadstoffe oder von Kontaminanten in Oberflächenwasser gemäß EU-WFD

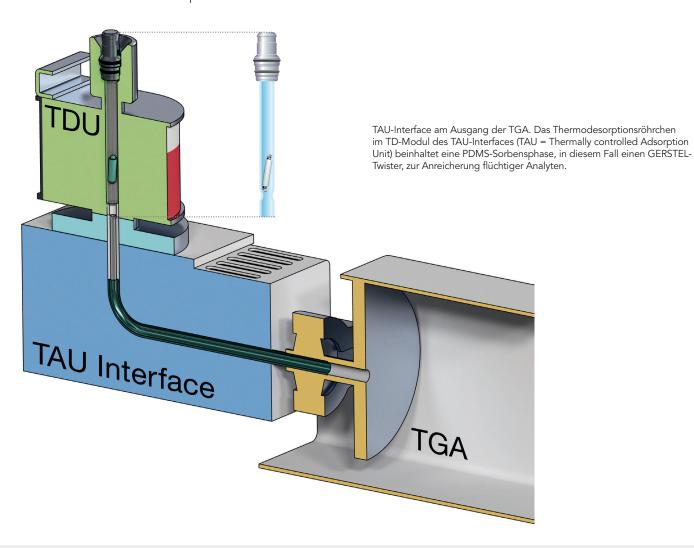

Das leistet die Chromldent PYRO-Edition

ChromIdent PYRO-Edition ist eine optimale Erweiterung der TED-GC/MS und ermöglicht die effiziente Identifizierung von Mikroplastik. Intelligent konzipierte Software-Algorithmen in Zusammenspiel mit der PYRO-Datenbank erlauben die sichere Bestimmung auch von Spurenbestandteilen bei hoher Matrixlast.

- Die Datenbank mit mehr als 100 g\u00e4ngigen Polymeren inklusive Mehrfachmessungen erm\u00f6glicht eine schnelle und effektive Nutzung des Systems
- Die Algorithmen der ChromIdent Pyro-Edition ermöglichen eine nachvollziehbare und überprüfbare Identifizierung auch bei hoher Matrixlast
- Die Datenbank kann einfach um selbst generierte Daten erweitert werden
- Unbekannte Copolymere und Polymermischungen können anhand bekannter Marker-Peaks verwandter Polymere identifiziert werden

Der MPS transportiert die einzelnen Probenröhrchen mit PDMS-Sorbens abgestimmt mit dem TGA-Lauf zum TED-Interface. Aus der Probe freigesetzte flüchtige organische Verbindungen und Abbauprodukte werden im Gasstrom aus der TGA gespült und auf dem Sorbens angereichert.

Im Anschluss an den TGA-Prozess wird das Probenröhrchen mit PDMS-Sorbens vom MPS zum zweiten Thermodesorber für die nachfolgende Analyse transportiert. Analyten werden thermisch desorbiert, im KaltAufgabeSystem (GERSTEL-KAS) cryofokussiert und temperaturprogrammiert auf die GC-Säule überführt.



Das einzigartige TAU-Interface

Das patentierte TAU-Interface – entwickelt von der BAM in Kooperation mit GERSTEL – wird auf dem Gas-Auslass der TGA montiert. Flüchtige Verbindungen, die im Rahmen des TGA-Prozesses entstehen, werden im Gasstrom durch das TAU-Interface zum aufgesetzten Thermodesorber (TDU) transportiert, wo die Anreicherung auf einem Sorbens stattfindet. Die Temperaturkontrolle des Interfaces

ermöglicht es, hochsiedende Abbauprodukte aus dem Gasstrom durch Kondensation zu entfernen.

So wird der Eintrag komplexer Rückstände in das GC/MS-System unterbunden. Resultat: Hohe Systemstabilität, geringer Hintergrund und längerer unterbrechungsfreier Betrieb.

TGA-Ofen mit Probentiegel auf einem beweglichen Probenhalter, der zur thermogravimetrischen Analyse in den Ofen gefahren wird. Während des GC/MS-Laufs wird der Ofen umfassend konditioniert, um sicherzustellen, dass die TGA sauber und kontaminationsfrei für die nächste Probe bereitsteht.

Automatisierte Analyse von Mikroplastik in zwei Schritten

Der thermische Abbau in der TGA ist mit einem Anreicherungsschritt gekoppelt, gefolgt von der GC/MS-Bestimmung der flüchtigen Abbauprodukte. Der Prozess ermöglicht die indirekte qualitative und quantitative Bestimmung von Mikroplastik. Ein Sorbens im Abgasstrom der TGA dient der Anreicherung flüchtiger Abbauprodukte. Nicht- und schwerflüchtige Produkte verbleiben im TGA-Tiegel oder werden im TAU-Interface entfernt.

Eine Kontamination des GC/MS-Systems ist ausgeschlos-

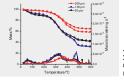
Der Autosampler transportiert das beladene Sorbens zur TD-GC/MS zur Analyse.

Die Ergebnisse erlauben es, selbst Spuren an Polymeren in der Ursprungsprobe sicher nachzuweisen. Ein Analysenzyklus dauert typischerweise zwei Stunden.

Schritt 1: Thermische Extraktion

TGA-Probe

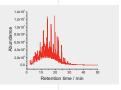
Sediment, Boden, Kompost oder Filterrückstände von Getränke- oder Wasserproben werden getrocknet und homogenisiert und bis zu 100 mg in einen TGA-Tiegel gegeben und im TGA-Autosampler platziert.

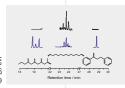

Pyrolyse im TGA-Ofen

Die Probe wird im TGA-Ofen thermisch extrahiert und pyrolysiert. Flüchtige Abbauprodukte des Mikroplastiks werden auf Polydimethylsiloxan (PDMS) angereichert, z.B. auf dem GERSTEL-Twister.

TGA-Analyse

Die TGA-Kurve zeigt den Massenverlust der Probe als Funktion der Temperatur und gibt z.B. Aufschluss über die Trockene der Probe (Wasserverlust). Wiederholungsmessungen zeigen, wie homogen eine Probe ist.

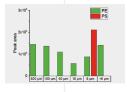

TDU-Röhrchen

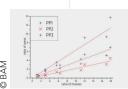

Der beladene PDMS-Twister wird automatisch zum TD-GC/MS-Analysensystem transpor-

Schritt 2: Analyse der Pyrolyseprodukte

Thermodesorption-GC/MS

In der GERSTEL-TDU werden die Analyten aus der PDMS-Phase des Twisters thermisch desorbiert, cryofokussiert und auf das GC/MS-System überführt.




Identifikation von Marker-Verbindungen

Marker für die einzelnen Polymere werden auf Basis von Referenzdaten mit der Software ChromIdent PYRO-Edition identifiziert.

Polymeridentifikation

In der Probe – hier handelt es sich um Filterfraktionen - enthaltene Polymere werden auf Basis der Marker-Verbindungen identifiziert und quantifiziert.

Polymerquantifizierung

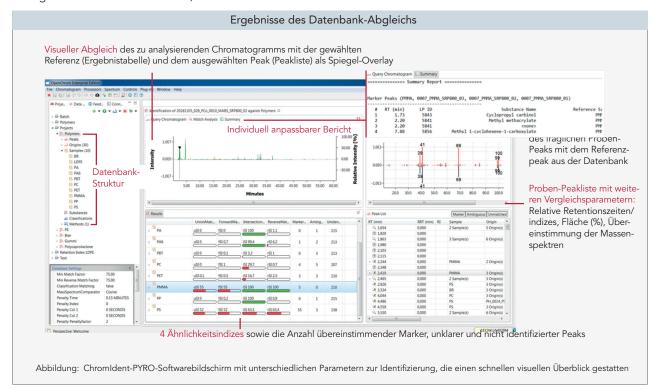
Die ermittelten Konzentrationen an Marker-Verbindungen erlauben die Berechnung des ursprünglichen Gehalts an Polymer in der Probe

Bestimmung von Mikroplastik in Trinkwasser und Getränken

- Filtertiegel ermöglichen die direkte TED-GC/MS-Analyse von Filterrückständen aus bis zu 10 L Wasserprobe.
 - Material: Rostfreier Stahl, stabil bis 600°C.
 - Porengröße: 5 μm - Volumen: 500 μL
- Die Filtertiegel-Dimensionen ermöglichen den direkten Einsatz im TED-GC/MS. Der Filtertiegel wurde für das Filtrieren und anschließender Analyse von wässrigen Proben mit geringem Matrixgehalt entwickelt.
- Filtertiegel sind direkt einsatzbereit. Nach der Filtration und Trocknung wird der Filtertiegel im TED-GC/MS für die Analyse platziert. Die Tiegel sind wiederverwendbar.

- Veröffentlichung:
 - U. Braun, K. Altmann, C. Bannick et al. (2021) Smart filters for the analysis of microplastic in beverages filled in plastic bottles, Food Additives & Contaminants: Part A, 38:4, 691-700,

DOI:10.1080/19440049.2021.1889042

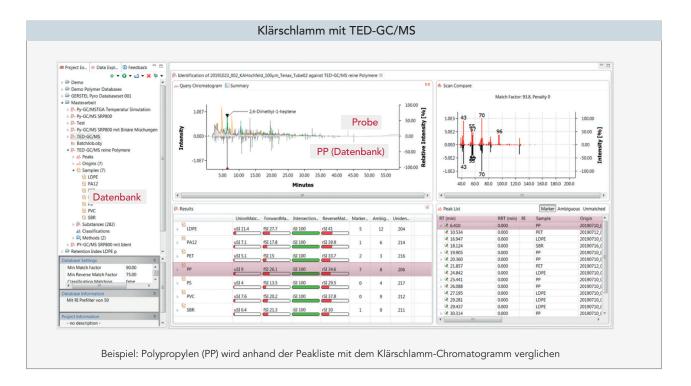

Copyright® GKD Gebr. Kufferath AG

GERSTEL-ChromIdent® Pyro-Edition

Die GERSTEL-Chromldent® Pyro-Edition Software ermöglicht es, auf effiziente Weise unbekannte, komplex aufgebaute Proben durch intelligenten Vergleich mit einer Datenbank aufzuklären, und zwar auch dann mit hoher Erfolgswahrscheinlichkeit, wenn lediglich Teilmengen einer komplexen Mischung in der Datenbank hinterlegt sind. Chromldent kommt zum Beispiel bei der Bestimmung von Mikroplastik in Umweltproben mittels TED-GC/MS zum Finsatz

GERSTEL ChromIdent Pyro-Edition ermöglicht es, Chromatogramme mit einer Datenbank, auch unter Berücksich-

tigung Gerätehersteller-unabhängiger MS-Datenformate, zu vergleichen und Übereinstimmungen schnell und zuverlässig nach verschiedenen Methoden zu ermitteln. Nach dem Prinzip eines Peak-Listen-Abgleichs lassen sich Pyrogramme von Polymeren über spezifische Marker und Ähnlichkeitsindices sicher zuordnen. Ein der Probe entsprechendes Matrix-Hintergrundsignal wird für die Zuordnung nicht benötigt. Der Einsatz von Chromldent erleichtert somit die Identifikation von Komponenten in einer komplexen Matrixumgebung mittels einer Datenbank-Referenzsubstanz.



Die GERSTEL ChromIdent Pyro Edition enthält mit der ChromIdent PYRO-Datenbank einen Satz an Daten für Polymere, Copolymere, Biopolymere und auch Mischungen, beispielsweise Reifengummi. Die Datenbank umfasst für viele Polymere Mehrfachmessungen, was einem Zugewinn an Zuverlässigkeit bei der Zuordnung gleichkommt. Die Software erlaubt bei der Auswertung unterschiedliche Operationen, die das Auffinden und die kontextbezogene

Zuordnung einer Verbindung ermöglichen. Dank der einfachen Erweiterung mit eigenen Chromatogrammen, lässt sich die Datenbank schnell an individuelle Anforderungen anpassen. Zudem bietet ChromIdent neben der Abfrage der GERSTEL Pyro Datenbank auch die Möglichkeit, Datenbanken basierend auf Pyrolyse-GC/MS-Daten oder TED-GC/MS-Daten, passend für die eigenen analytischen Fragestellungen, selber zu erstellen.

Während der Datenverarbeitung werden verschieden Operationen durchgeführt, um die Bestimmung und Klassifizierung von Probenbestandteilen, z.B. Polymeren oder Copolymeren, zu ermöglichen. Dank farblicher Hervorhebungen sind Übereinstimmungen auf den ersten Blick sichtbar. Bei Bedarf lassen sich für jeden einzelnen Peak weitere, in der Datenbank hinterlegte Informationen einblenden.

Wissenschaftliche Artikel zur TED-GC/MS

Die BAM hat seit 2014 zahlreiche Artikel über TED-GC/MS in angesehenen Fachzeitschriften veröffentlicht. Diese decken Themen ab wie Polymeranalysen und die Bestimmung von Mikroplastik in Trinkwasser und Getränken, sowie in Umweltproben wie Wasser, Sediment, Boden, Schlick oder Kompost.

Sie wollen mehr?

GERSTEL liefert integrierte Sample Prep Solutions (SPS). Als kompetenter Partner liefern wir Ihnen individuell abgestimmteLösungen für Probenvorbereitung, GC (GC/MS) und LC (LC/MS) aus einer Hand. Zu Ihrer Unterstützung werden zusätzlich Geräteeinführung und Applikationstrainings angeboten.

Unsere bewährten Komplettlösungen basieren auf der Kombination von Agilent Technologies- und GERSTEL-Komponenten.

Garant Ihres Erfolgs ist ein Team aus erfahrenen, hoch motivierten Mitarbeiterinnen und Mitarbeitern, die Sie umfassend beraten und die Ihnen in technischen und applikativen Fragen zuverlässig zur Seite stehen.

Service von Anfang an

Value-Added-Support-Provider von Agilent Technologies

Unsere Service-Ingenieure sind bestens darauf trainiert, Systeme von GERSTEL und Agilent Technologies zu installieren und in Betrieb zu nehmen – auch im regulierten Umfeld.

Kompetente Installation und Einweisung

Im Zuge der Inbetriebnahme weisen Sie unsere Service-Ingenieure in das System und seine Steuersoftware ein. Sie sind in der Lage, Ihre Proben zu analysieren und sichere Ergebnisse zu produzieren.

Schulung

Bei Bedarf bieten wir Ihnen individuell abgestimmte Schulungen unter Leitung erfahrener Applikationschemiker an – gerne bei Ihnen vor Ort oder in unseren Schulungslaboratorien.

GERSTEL-Geräte und -Systeme werden nach der internationalen Qualitätsnorm ISO EN 9001:2015 gefertigt. Bevor ein System zum Einsatz kommt, wird seine technische und applikative Funktionalität überprüft. Sie können sich darauf verlassen, ein einwandfreies und auf Ihre Erfordernisse optimal zugeschnittenes System zu erhalten.

Service-Support

Mit Niederlassungen in Deutschland, Österreich und der Schweiz bieten wir Ihnen in allen Service- und Software-Fragen eine umfassende und qualifizierte Unterstützung vor Ort.

Erfahrene Ingenieure stehen Ihnen über unsere Hotline telefonisch zur Seite, Anruf oder E-Mail genügt.

GERSTEL GmbH & Co. KG Eberhard-Gerstel-Platz 1 45473 Mülheim an der Ruhr Germany

MAKING LABS WORK

www.gerstel.com

Subject to change. GERSTEL®, GRAPHPACK® and TWISTER® are registered trademarks of GERSTEL GmbH & Co. KG. Copyright by GERSTEL GmbH & Co. KG. Agilent® is a registered trademark of Agilent Technologies, Inc.

